How can aircraft measurements tell us about the source/sink distribution of greenhouse gases?

Canadian Space Agency Workshop on Suborbital Platforms and Nanosatellites: April 14th~16th, 2010

John C. Lin

Department of Earth and Environmental Sciences

Unique Value of In-situ Aircraft Sampling

The ability to probe tracers both in the vertical and the horizontal at multiple scales, enabling:

•Determination of spatial variability of tracers (CO₂ as example here)

•Direct constraint of regional-scale fluxes from airmassfollowing experiments

•Model testing: diagnosis of errors in atmospheric modelling (e.g., PBL ht, wind vectors, convection)

•Validation of space-borne sensors

COBRA-2004

What have we learned from intensive atmospheric sampling field programmes of CO₂?

By J. C. LIN^{1*}, C. GERBIG², S. C. WOFSY³, B. C. DAUBE³, D. M. MATROSS³, V. Y. CHOW³, E. GOTTLIEB³, A. E. ANDREWS⁴, M. PATHMATHEVAN³ and J. W. MUNGER³ *Tellus* (2006), 58B, 331–343

Fig. 1. Flight tracks from the CO₂ Budget and Rectification Airborne (COBRA) study from three different years: August 2000, May–June of 2003, and May–August of 2004. The aircraft altitude above sea-level is shown in grayscale.

Supported by: NASA, NSF, NOAA, and Dept. of Energy

<2 km

>6 km

2~6 km

COBRA (CO₂ Budget & Rectification Airborne Study)

University of North Dakota Citation (COBRA-2000, 2003)

University of Wyoming King Air (COBRA-2004)

COBRA (CO₂ Budget & Rectification Airborne Study)

COBRA Participants:

Steven C. Wofsy, Paul Moorcroft, Bruce Daube, Dan Matross, Bill Munger, V.Y. Chow, Elaine Gottlieb, Christoph Gerbig, John Lin: (*Harvard University*) Tony Grainger, Jeffrey Stith: (University of North Dakota) Ralph Keeling, Heather Graven: (*Scripps Institution of Oceanography*) (*National Center for Atmospheric Research*) Britton Stephens: Pieter Tans, Peter Bakwin, Arlyn Andrews, John Miller, Jim Elkins, Dale Hurst: (Climate Monitoring & Diagnostic Laboratory) (University of New Hampshire) Dave Hollinger: Ken Davis: (*Pennsylvania State University*) Scott Denning, Marek Uliasz: (Colorado State University) Larry Oolman, Glenn Gordon: (*University of Wyoming*)

 Determination of spatial variability of CO₂ and other tracers

- Direct constraint of regional-scale fluxes from airmassfollowing experiments
- Model testing: diagnosis of errors in atmospheric modelling (e.g., PBL ht, wind vectors, convection)
- Validation of space-borne sensors

- Lin, J.C., C. Gerbig, B.C. Daube, et al., *An empirical analysis of the spatial variability of atmospheric CO₂: implications for inverse analyses and space-borne sensors*, Geophysical Research Letters, 31 (L23104), doi:10.1029/2004GL020957, 2004.
- Gerbig, C., J.C. Lin, S.C. Wofsy, B.C. Daube, et al.. *Toward constraining regional-scale fluxes of CO₂ with atmospheric observations over a continent: 1. Observed spatial variability from airborne platforms*, J. Geophys. Res., 108(D24), 4756, doi:10.1029/2002JD003018, 2003.

Models of the Atmosphere Divide it Up into Many Individual Boxes (gridcells)

Height

Longitude

EQ

Latitude

For spatially heterogeneous field of CO_2 concentration over land, there is can be large differences between an observation at a point location and the gridcell-averaged value. ("representation error")

Representation Error derived from Spatial simulation for CO₂, based on Variogram

Representation error: continent vs ocean

North America August 2000

Lin, J.C., C. Gerbig, B.C. Daube, et al., An empirical analysis of the spatial variability of atmospheric CO₂: implications for inverse analyses and space-borne sensors, Geophysical Research Letters, 31 (L23104), doi:10.1029/2004GL020957, 2004.

- \bullet Determination of spatial variability of CO_2 and other tracers
- Direct constraint of regional-scale fluxes from airmass-following experiments
- Model testing: diagnosis of errors in atmospheric modelling (e.g., PBL ht, wind vectors, convection)
- Validation of space-borne sensors

- Lin, J.C., C. Gerbig, S.C. Wofsy, et al., *Measuring fluxes of trace gases at regional scales by Lagrangian observations: Application to the CO*₂ *Budget and Rectification Airborne (COBRA) study*, J. Geophys. Res., 109 (D15304, doi: 10.1029/2004JD004754), 2004.
- Lin, J.C., et al., *Designing Lagrangian experiments to measure regional-scale trace gas fluxes, J. Geophys. Res.,* 112(D13312, doi:10.1029/2006JD008077), 2007.

Planning and Analysis of "Air-Following" Experiments

Lin et al., "Measuring fluxes of trace gases at regional scales by Lagrangian observations", *J. Geophys. Res.* [2004].

Planning and Analysis of "Air-Following" Experiments

Citation: Lin, J. C., C. Gerbig, S. C. Wofsy, V. Y. Chow, E. Gottlieb, B. C. Daube, and D. M. Matross (2007), "Designing Lagrangian experiments to measure regional-scale trace gas fluxes", *J. Geophys. Res.*, *112*, D13312, doi:10.1029/2006JD008077.

Citation: Lin, J. C., C. Gerbig, S. C. Wofsy, V. Y. Chow, E. Gottlieb, B. C. Daube, and D. M. Matross (2007), "Designing Lagrangian experiments to measure regional-scale trace gas fluxes", *J. Geophys. Res.*, 112, D13312, doi:10.1029/2006JD008077.

Planning and Analysis of "Air-Following" Experiments

Citation: Lin, J. C., C. Gerbig, S. C. Wofsy, V. Y. Chow, E. Gottlieb, B. C. Daube, and D. M. Matross (2007), "Designing Lagrangian experiments to measure regional-scale trace gas fluxes", *J. Geophys. Res.*, *112*, D13312, doi:10.1029/2006JD008077.

Citation: Lin, J. C., C. Gerbig, S. C. Wofsy, V. Y. Chow, E. Gottlieb, B. C. Daube, and D. M. Matross (2007), "Designing Lagrangian experiments to measure regional-scale trace gas fluxes", *J. Geophys. Res.*, 112, D13312, doi:10.1029/2006JD008077.

- \bullet Determination of spatial variability of CO_2 and other tracers
- Direct constraint of regional-scale fluxes from airmassfollowing experiments
- Model testing: diagnosis of errors in atmospheric modelling (e.g., PBL ht, wind vectors, convection)
- Validation of space-borne sensors

Gerbig, C., J.C. Lin, S.C. Wofsy, B.C. Daube, et al., *Toward constraining regional-scale fluxes of CO₂ with atmospheric observations over a continent: 2.* Analysis of COBRA data using a receptor-oriented framework, J. Geophys. Res., 108(D24), 4757, doi:10.1029/2003JD003770, 2003.

Atmosphere Serving as an Integrator. But need to know how big box is! (mixed-layer height)

Fig. 18.15 of Meteorology Today, by C. Donald Ahrens

Weak Northern and Strong Tropical Land Carbon Uptake from Vertical **Profiles of Atmospheric CO₂**

Britton B. Stephens,¹* Kevin R. Gurney,² Pieter P. Tans,³ Colm Sweeney,³ Wouter Peters,³ Lori Bruhwiler,³ Philippe Ciais,⁴ Michel Ramonet,⁴ Philippe Bousquet,⁴ Takakiyo Nakazawa,⁵ Shuji Aoki,⁵ Toshinobu Machida,⁶ Gen Inoue,⁷ Nikolay Vinnichenko,⁸† Jon Lloyd,⁹ Armin Jordan,¹⁰ Martin Heimann,¹⁰ Olga Shibistova,¹¹ Ray L. Langenfelds,¹² L. Paul Steele,¹² Roger J. Francey,¹² A. Scott Denning¹³

2 3 4 Northern land 6 0.0 0.5 .5 2.0 2.5 1.01 km - 4 km CO2 (ppm)

22 JUNE 2007 VOL 316 SCIENCE

Mixed-Layer Biases

- \bullet Determination of spatial variability of CO_2 and other tracers
- Direct constraint of regional-scale fluxes from airmassfollowing experiments
- Model testing: diagnosis of errors in atmospheric modelling (e.g., PBL ht, wind vectors, convection)
- Validation of space-borne sensors

Satellite Weighting Function (example from MEOS)

(results from Thomas Kurosu, Harvard-Smithsonian Center for Astrophysics)

WFunc

Column CO₂ Measurements from Satellites?

CO₂ vertical profiles measured by aircraft (COBRA field campaign)

Column amount would be insensitive to mixed-layer height

Even better: if we could separate out column into at least two pieces of information

- 1) within mixed-layer
- 2) free troposphere

Citation: Lin, J. C., C. Gerbig, S. C. Wofsy, A. E. Andrews, B. C. Daube, C. A. Grainger, B. B. Stephens, P. S. Bakwin, and D. Y. Hollinger (2004), Measuring fluxes of trace gases at regional scales by Lagrangian observations: Application to the CO₂ Budget and Rectification Airborne (COBRA) study, *J. Geophys. Res.*, *109*, D15304, doi:10.1029/2004JD004754.

Comparisons to Column CO₂

Figure 6. Integrated profiles by the DC-8 (triangles) and King Air (circles) compared to FTS retrievals from the two CO_2 bands. CO_2 6228 cm⁻¹ band retrievals are solid; CO_2 6348 cm⁻¹ band retrievals are shaded. Each integrated aircraft profile has been divided by the dry surface pressure, yielding the familiar units of ppmv. The relationship between integrated profile and FTS column-average CO_2 VMR is linear for each band. A linear fit with intercept 0 gives slopes of 1.0216 for the CO_2 6228 cm⁻¹ band and 1.0240 for the CO_2 6348 cm⁻¹ band. The top plot shows the difference between the FTS measurements and the fitted line.

Integrated Aircraft CO₂ Column / Dry Column (ppmv)

Citation: Washenfelder, R. A., G. C. Toon, J.-F. Blavier, Z. Yang, N. T. Allen, P. O. Wennberg, S. A. Vay, D. M. Matross, and B. C. Daube (2006), Carbon dioxide column abundances at the Wisconsin Tall Tower site, *J. Geophys. Res.*, *111*, D22305, doi:10.1029/2006JD007154.

Conclusions and Future Steps

 Aircraft observations provide unique information on the spatial variability of tracers

• Airmass-following experiments yield constraints on regional fluxes for targetted areas: e.g., boreal forest fires, carbon loss in pine beetle-infested forests, methane release in Arctic

• The high-resolution atmospheric observations are valuable for improving models

• Aircraft data help in satellite validation efforts

=> Aircraft sampling is an important complement and addition to satellite observations!